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A theoretical model for the porous lead dioxide electrode is proposed on the basis of the macro- 
homogeneous model for porous electrodes. 

The structural changes during discharge, due to precipitation of lead sulphate, are considered. 
The two main structural effects, plugging of the pores and gradual insulation of the active electrode 

surface by the reaction product, lead sulphate, are both considered by relating them to the local 
degree of discharge. 

The numerical results show that, at high current densities, the discharge capacity is limited by both 
structural and transport restrictions. 

At the end of discharge a layer of lead sulphate crystals blocks the electrode surface in the outer 
layers of the electrode. The current can then neither be transferred across this insulated surface nor 
reach remaining active material in the inner parts of the electrode because of acid depletion, which 
is furthermore accelerated by the decreasing porosity. 

1. Introduction 

The important problems of mass transfer and 
current distribution within porous electrodes can 
be successfully treated by application of the 
theories of porous electrodes. Various mathe- 
matical models have been proposed for the 
theoretical study of the discharge behaviour of 
porous electrodes. The work up to 1966 has 
been summarized by de Levie [1]. 

These early theories did not take into con- 
sideration the changes in porous structure 
during the discharge process. 

During the last few years some new models 
have been developed for the description of 
porous electrodes undergoing structural changes 
[2-5]. Even these models must, however, be 
extended further in the analysis of the dynamic 
behaviour of actual battery electrodes, in which 
a reaction product is precipitated, which gradu- 
ally insulates the active surface and plugs the 
pores. 
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Among the practically important electrodes, 
belonging to this class of porous electrodes, is 
the lead dioxide electrode, used as the positive 
plate in the lead-acid cell. 

In a previous work [6] it was shown that the 
initial current distribution in this electrode can 
be satisfactorily predicted by application of the 
macrohomogeneous model [7-8]. The experi- 
mental results on changes in current distribution 
during discharge indicated further that the 
transient discharge behaviour of the porous lead 
dioxide electrode can be fully understood only 
when considering together the effects of acid 
depletion and precipitation of the reaction 
product, lead sulphate. 

An early model for the transient behaviour of 
this electrode was proposed by Stein [9], who 
assumed a negligible charge transfer resistance 
and regarded the structural effects only in a 
simplified, explicit manner. A more realistic 
treatment must, however, also take into con- 
sideration the kinetics of the electrode process 

261 



262 DANIEL SIMONSSON 

and how the structural changes influence the 
electrode kinetics and the transport parameters. 

In the present work a model is proposed 
which takes into account these structural effects 
in the mathematical description of the transient 
discharge behaviour of the porous lead dioxide 
electrode. 

2. Formulation of the mathematical model 

2.1. The model 

The mathematical model presented below is 
based upon a porous lead dioxide electrode, in 
which the accessible pores are completely filled 
with the electrolyte, a solution of sulphuric acid. 

The porous body is regarded as macrohomo- 
geneous. When the electrode is discharged, a 
cathodic current will cross the matrix-electro- 
lyte interface through the electrode reaction: 

PbO2(s)+4H + + SO4 z- + 2e 

PbS O4(s ) + 2H2 O(1) (1) 

This stoichiometric reaction formula indicates 
two major changes during discharge. The sul- 
phuric acid in the pores is consumed, whereby 
an acid concentration gradient is established. 
Simultaneously lead sulphate will precipitate 
on the shrinking PbO2-matrix. Because of the 
lower density of PbSO4, compared to PbO2, the 
porosity will decrease in proportion to the 
increasing amount of PbSO 4. 

The description of the discharge process must 
therefore be based upon equations for the trans- 
port of mass and charge in the pore electrolyte, 
for the actual electrode kinetics and for the 
structural changes. 

In order to facilitate analysis a number of 
simplifying assumptions are first introduced. 
Although some of these assumptions may seem 
rather rough, they do not affect the essential 
features which are of interest. 

1. When the discharge is not too deep, the 
conductivity of the PbOz-matrix is much higher 
than that of the pore electrolyte. This also means 
that the electrode can be regarded as one- 
dimensional [6]. 

2. The time constant of the charging of the 
electrical double layer is small compared to the 
discharge time. 

3. The transport processes in the electrolytic 
solution can be adequately described by the 
equations of dilute solution theory. 

4. Electrolyte flow in the pores is due only to 
the decreasing porosity. 

5. Bivalent lead ions are transported only 
over very short distances with respect to the 
electrode thickness before they precipitate with 
sulphate ions to form lead sulphate. 

6. At the outer surface of the electrode the 
concentration of sulphuric acid is equal to its 
value in the bulk of the electrolyte. 

7. The system is isothermal. 
8. The sulphuric acid can be regarded as a 

binary electrolyte, completely dissociated into 
H + and HSO4- ions only. 

The last assumption is justified by the fact 
that at a concentration of 5 M the sulphuric acid 
dissociates by about 85~  into HSO~ ions and 
by 5 ~  into SO]- ions, while about 10~ of the 
molecules are undissociated [10]. These orders 
of magnitude are approximately valid down to 
0.5-1 M. With this assumption the derived 
system of equations will be much simpler than in 
the case where also the SO 2- ions and the 
neutral HzSO 4 molecules are considered. 

2.2 Development of  the basic equations 

The basic transport equations for the one- 
dimensional, porous PbO 2 plate can now be 
derived by application of porous electrode 
theory [7]. The co-ordinate, x, equals 0 at the 
centre of symmetry of the electrode and equals 
L at the outer surface. For symmetry reasons 
only one half of the electrode needs to be 
considered. 

The H + ions are denoted by the index 1 and 
the HSO4 ions by the index 2. 

The fluxes of H + and HSO4 ions may be 
expressed as a sum of three terms describing 
diffusion, migration and convection respectively 

aci zi 04~2 
N, = - D, Ox - c,l, IZI ~x + c ,v( i= 1,2) (2) 

where 

Ni = flux of species i (kmole m -  2 s-  1) 
D~ = effective diffusion coefficient of species i 

(m 2 s -1) 
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ci = concentration of  species i (kmole m -a of 
electrolyte) 

Ii -- ionic mobility of species i (m 2 s-  t V- ~) 
z i = charge of species i 
4)2 - potential of pore electrolyte (V) 
v = electrolyte velocity (ms-z) 

From the condition of electroneutrality it 
follows that, 

= c2  = c ( 3 )  

where c = concentration of sulphuric acid 
(kmole m -  3). 
The current density in the electrolyte, i 2, is 
determined by the flux of ions: 

i 2 = F Z  z i N  i -= F ( N  1 - N2)  (4) 

where 

i z = (Am -z)  

F =  Faraday's constant, 96.5x106 As (kg 
equiv.)- 1 With the use of Equations (2) and (3), 
Equation (4) can be transformed into 

04)2 De 
i2 = -- tc ~ x  F(D~ - D2) 0--s (5) 

where 

tc = F Z I zl ] cl li the effective conductivity of 
the pore electrolyte (fU ~ m-  1) 

The electrode potential is defined as E -- 4)~- 
4)2 (4)~ = potential of matrix phase (V)). But 
since the matrix phase can be regarded as 
equipotential 

ax  -- 

OCz OE 
Ox Ox (6) 

Equations (5) and (6) lead to the final expres- 
sion for the current density in the pore electro- 
lyte: 

OE Oc 
i z = tc O-x - F ( D ~ - D E )  ~xx (7) 

The local concentration change may be expressed 
in a differential material balance for species 1 : 

O(eq) ON 1 
a--7 = - a--7 + R ,  ( s )  

where 

e = porosity 
t = time (s) 
R 1 = source term for species 1 (kmol m -3 s -1) 

A suitable expression for N1 can be obtained 
from Equation (2) after elimination of c~ and 
4)2 by application of Equations (3) and (5) 
respectively. Together with the Nernst-Einstein 
relation: 

R T  
Di = ~ li (9) 

where 
R = universal gas constant, joule (kmole deg)- 1 
T = temperature, ~ 

this leads to 

where 

q i 2  Oc 
N~ - F O ~ x  + cv (10) 

C1] z I  ] l l  
t I - -  

~ . C i ] Z i [ l i  

the transference number of the hydrogen ion 

D = 2 DID2  

D1 +D2' 

the binary diffusion coefficient (m E s-~). 
In accordance with the bisulphate electrolyte 

model, the stoichiometry of the electrode reac- 
tion (l) may now be described in the equivalent 
form: 

PbOz(s) + 3H + + HSO~+ 2e 

~- PbSO4(s)+ +2H20( / )  (11) 

From this stoichiometric formula it follows that 
the source term in Equation (8) can be related to 

the local discharge rate per unit volume, ~?i___z 
Ox 

according to Faraday's law: 

3 0i2 
R~ - (12) 

2 F  Ox 

The transference number of the H + ion, tl, is 
fairly constant in the concentration interval 
which is of  interest, and Equations (3), (10) and 
(12) may thus be inserted into Equation (8) to 
give 
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O(ec) 3-2t10i2 0 ( O c )  0 
O t -  2F ~ xx+}7  DOx "-O-x (co) (t3) 

2.3 The kinetics of  the electrode reaction 

It has been previously reported [6] that in the 
region - 3 0  to - 1 0 0  mV, the current-over- 
voltage relation for the electrode reaction in 
5 M H2SO 4 can be expressed by a Tafel equation 
in which the prelogarithmic coefficient has a 
value of about 30 mV per decade. When these 
experiments were repeated for successively 
lower concentrations down to 1.0 M, it was 
found tha t -wi th in  the experimental limits of 
e r r o r -  the same relation holds for the whole 
concentration range of interest, 1-5 M H2SO 4. 

The overvoltage, t/ (V), is here defined as the 
difference between the maximum, rather constant 
electrode potential, E, obtained after the initial 
drop of voltage at the beginning of discharge 
and the equilibrium, open circuit potential at 
the actual concentration, Ec (V). 

In this specific case, it is thus possible, as an 
approximation, to express the local electrode 
potential as a sum of two additive terms 

E = E~ + q (14) 

where r/ is independent of the concentration of 
sulphuric acid. 

aE 
The potential gradient ~xx appearing in 

Equation (7) may consequently be written 

OE OEc Oc Oq (15) 
Ox-  Oc Ox + Ox 

The kinetic expression for the reaction rate 
per unit volume is then, approximately 

4 .  

o t  2 
- -  = - Sjo exp ( -  2Fq/RT) (16) 
Ox 

where 

S = specific active surface (m-2) 
Jo = exchange current density (A m-2) 

2.4 Consideration of  the structural effects 

The effective transport coefficients in Equations 
(7) and (13) will decrease during the discharge 
process, which leads to a continuous plugging 

of the pores, since PbO 2 is converted into PbSO 4 
with a larger molar volume. In addition the free 
active surface, available to the charge transfer 
process, S, which appears in Equation (16), 
depends on the fraction of the surface not yet 
covered by insulating lead sulphate crystals. It  is 
thus necessary to introduce equations describing 
the structural changes in the electrode. A simple 
way to do this is to relate these structural 
changes to the local degree of discharge, X, which 
may be defined as proportional to the amount of 
charge which has been consumed up to the actual 
time, t: 

-- L i tOi2 dt (17) 
X = qo 3o Ox 

where 

qo = initially available quantity of charge per 
unit volume (As m-3) 

A relation between the local porosity, e, and 
the local degree of discharge, X, can now be 
easily derived: 

= to - k(1 - %)X (18) 

where 

eo = initial porosity, prior to any discharge 
k = 0.917, a constant determined by the 

difference in specific volume between 
PbO 2 and PbSO 4 (see Table 1) 

The simplest way to take into account how 
the structural changes affect the transport co- 
efficients is to assume that they vary in propor- 
tion to the porosity. Thus, as an example, the 
diffusion coefficient, D, can. be expressed as 

8 
D = - o c  ( 1 9 )  

80 

where the index c denotes pure concentration 
dependence. 

In the absence of detailed knowledge, the free 
active surface is assumed to be linearly related 
to the quantity X: 

s = So 1 - (20) 

So(m- 1) is the initially available active surface in 
the fully charged electrode, while Xma , is the 
maximum fraction of the electrode material 
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which can be utilized at the actual current 
density. It may be expected from previous experi- 
mental results [6] that this quantity depends on 
the applied current density. This seems reason- 
able also in view of the decreasing capacity of 
flat PbO2 electrodes with increasing current 
density. 

The convective term in Equation (13) will, for 
simplicity, be related only to the decreasing 
porosity during discharge, which leads to a net 
flow of electrolyte out of the volume element. 

Thus, neglecting the density changes: 

gv & 
(21) 

Ox - at 

However, the rate of change in porosity is also 
proportional to the rate of conversion of PbO 2 
to PbSO4 and to the difference in molar volume 
between products and reactants: 

as 1 ai2 
at = 2F ax (Vp-Vr) (22) 

where 

Vp = molar volume of PbSO4, 48.9 • 10 -a m a 
kmole- 1 

Vr = molar volume of PbO2, 25.5x 10 -a m a 
kmole- ~ 

Thus, after elimination of &/Ot in Equation 
(21) 

63V 1 r 2 
Ox = 2F -~x (Vp- V,) (23) 

Since at x = 0, v = i 2 = 0 (because of sym- 
metry reasons) Equation (23) can easily be 
integrated: 

i2 (Vp- Vr) (24) 
v =  2F 

When the structural equations above together 
with Equation (15) are inserted into the basic 
equations (7), (13) and (16), the following 
equations are obtained, which describe the 
dynamic behaviour of the electrode. 

s (aE~ ac aq) s ac 
i 2 = - g c -k- - F  -- (D 1 -O2)  c 

so \ ar So 

(24) 

at 2Fe ax +-e~-x Ocox + 

i2 
( l ip -  V~) ~ (25) + 

ai2 - SoJo (1 ~ - •  0-x --- - exp ( -  2Ftl/R T) 

(26) 

Where s is defined by Equation (18) and J( by 
Equation (17). 

These equations can be transformed into the 
more convenient dimensionless form through 
the following transformations: 

c Do t 
z = x/L; C = - - ;  ~ - 

C O L 2 

F(q - tlx=o)" E' FEc i2 
R T  ' = R - T ; i =  

where 

L = 

C O 

D O = 

the thickness of one symmetric half of 
the porous electrode (m) 
the initial concentration of sulphuric 
acid (kmole m-3) 
the diffusion coefficient at the initial 
conditions (m 2 s-1) 
activation overvoltage at x = 0, (V) 
(time dependent) 

The equations representing the electrode model 
then become 

e ~ c ( a E ' o c  oq') s a c  
i = a  - - -  + - b -  (27) 

So \ a c  7z az } So 

OC f Oi 1 0 e D c 
az - (3-2t l ) '7~-z  + ~- ~ ~o Do ~z + 

+fs co(Vp- Vr)iO~z (28) 

O i (  X ) e x p  ( - 2 t / ' ) ( 2 9 )  - -  = 

Oz g 1 Xm,x 

IL I r ai 
X = - -  dr (30) 

Doqo .1o O-z 

where tr o is the initial conductivity and where the 
new dimensionless parameters have the follow- 
ing definitions: 
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~oRT 

ILF 

F(D1 - D 2 ) r  0 
b -  

/L 

/L  
f = - -  

2F D o c o 

SoJo L 
g = - - -  exp ( - 2 F  tlx=o/RT ) 

I 

Before any discharge of the electrode the acid 
concentration in the pores is uniform and equal 
to the concentration in the bulk. The electrode is 
assumed to be fully charged. Thus the initial 
conditions are: 

at t = 0, c(x) = c o or, equivalently, C = 1 
X(x)  = o 

Since mass transfer resistances exterior to the 
porous electrode are assumed to be negligible, 
the following boundary condition exists: 

a t z =  1, e = c o o r C =  1 

Also, at this surface the current density in the 
electrolyte must be the total current density 
applied. 

At z = 1, i 2 = I or i = 1 

At the plane of symmetry of the electrode, 
symmetry conditions may be expressed as: 

OC Otl' Oe 
A t z = O ,  Oz Oz oz = O; i 0 

Also, by the choice of reference voltage, t/' = 0 
a t z =  O. 

The equations above represent a rather com- 
plicated non-linear problem of the boundary 
value type. 

Solution of these equations requires the appli- 
cation of suitable numerical methods. Before 
these calculations can be carried out, the actual 
values of the parameters appearing in the 
equations must be determined. 

3. Determination of the actual parameters in the 
model 

formulation of the model can be determined 
from experiments and from suitable data given 
in the literature. 

The initial effective conductivity of the sul- 
phuric acid in the fully charged PbO2 plate has 
been reported earlier [6]. 

The diffusion coefficients in the free electro- 
lyte can be found in the literature. These values 
can be corrected by the same factor as used for 
the conductivity to give the effective values with 
respect to the porous electrode. 

The individual ionic diffusion coefficients are 
calculated from the formula for the binary 
diffusion coefficient and known transport num- 
bers. 

The values of Xma x at various current densities 
can be estimated from experimental results in 
[6] and from discharge experiments with electro- 
lyte flow through the electrode to remove 
transport restrictions. Thus Xma * was found to 
be approximately 0.45 at - 1.0 • 103 A m -2 and 
0.60 at -0 .50  x 103 A m -2. 

The dependence of e.m.f, on acid concentra- 
tion was evaluated from the reported e.m.f. 
values of Wynne-Jones et al. [11 ] for the cell 

Pt I H2(g) l H2SO4(m) i PbSO4(s) I PbO2(s) t Pt 

Since Ecell : E c - E  H. 

Where 

Ece u = e.m.f, of the cell, (V) 

EH = electrode potential of hydrogen electrode, 
(v) 

We may now write 

OEc OEeell OEH 

Oc Oc OC 

~Ecell An approximate expression for ~ can be 

calculated from the tabulated values for the 
e.m.f, at various concentrations [11]. Assuming 
a constant activity coefficient in the concentra- 
tion range of interest we may write, according 
to Nernst's formula: 

a E  H R T 1 

0c F c 

The transport parameters appearing in the After transformation into correspondingdimen- 
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sionless quanti t ies  we finally 
dimensionless  equa t ion  

0E' OE'ce11 1 

0C OC C 

arrive at  the 

F Ecell 
where  E 'ee l l  = - -  

R T  

The da ta  used in the  calculat ions  (for 20~ 
are  summar ized  in Table  1. 

ca lcula ted concent ra t ion  profile the current  
d is t r ibut ion  and  potent ia l  profile were calcu- 

la ted f rom Equat ions  (27) and (29) by  a Runge-  
K u t t a  method .  The b o u n d a r y  value p rob lem 
was t rea ted  as an ini t ial  value p rob lem,  in which 
the missing ini t ial  condi t ion,  g(t)  was guessed, 
and  i te ra t ion  cont inued  unti l  the given condi t ion  
at  the other  b o u n d a r y  was sat isfactori ly fulfilled 
(relative er ror  less than  10-5).  The calculat ions 
were repeated  in this cyclic manner  unti l  the  

Table 1. Numerical values of  the parameters used for the calculations 

Parameter Ref  Note 

L = 0"9x 10-3 m 
Co = 5'0 kmole m-3 
eo = 0'60 
Do = 2.62x I0 -1~ m2s -~ 

De~Do = 0.706+0.294 C 

(D1-D2)c = 3'5x 10 -1~ m2s -1 
too = 7 f~-lm -1 

f 0"20 + 2 '10c- 1"3C 2 
scc/Ko = (0"2 ~< C~< 1) 

2"84 C (C< 0-2) 
tl = 0.80 
hE" f 5.32+1/C(0"2<~C<~1) 
~C - ~. 0'13 +2'04/C (C< 0"2) 
Mpbo 2 = 239'19 kg kmole -~ 
Mpbso 4 = 303.25 kg kmole- a 
PPbo 2 = 9"375X 103 kg m -3 
ppbso 4 = 6"2x 103 kg m -3 

Vp -- Mpbs~ -- 48"9 X 10- 3 m 3 kmole- 1 
PPbSO 4 

Vr = 25"5• 10 -3 m 3 kmole -1 
qo = 2F(1-eo)  39"2 As m -3 

k = PPbo2 (Vp- Vr) = 0"917 
M p b o  2 

Thovert 
[12 a] 

Thovert 
[12 al 

[61 

Kolrausch 
[12 bl 
[12 b] 
[111 

[131 
[13] 
[13] 
[131 

Modification of value for 
free electrolyte at 5 M 
Least square approximation 

Average value 

Least square approximation 

Average value 
Least square approximation 

4.  N u m e r i c a l  procedure 

The par t ia l  differential  equat ion  system was first 
solved by  an impl ic i t  finite difference me thod  
and  the quas i - l inear iza t ion  technique [14]. 

Only  Equa t ion  (28) was l inearized.  I t  was 
decoupled  f rom Equa t ions  (27) and (29) by  
solving for  the concent ra t ion  in the ( k + l ) t h  
i te ra t ion  using the values f rom the k th  i te ra t ion  
for  the o ther  dependen t  variables.  Wi th  the 

required accuracy was ob ta ined  for  each depend-  
ent  var iable .  

However ,  this app l ica t ion  o f  the impl ic i t  
me thod  requires a very large number  o f  ar i th-  
metic  operat ions .  F o r  the mos t  interest ing case 
as regards  t ransient  behaviour ,  the high rate  
discharge,  the explicit  d i f ference-method actu-  
ally proved  to be more  advantageous  in spite of  its 
restrictive stabil i ty condi t ions  [15]. F o r  very 
rap id  discharges the larger  number  of  t ime steps 
required with this me thod  was more  than  
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compensated by the smaller number of arith- 
metic operations required at each time step. 

Therefore the explicit method was preferred 
in the calculations for very rapid discharges, 
while the implicit method was used only to 
check the results from the explicit method. 

The calculations were tested for convergence 
and stability by successively decreasing the 
length and time steps until the results did not 
change appreciably. 

5. Results and discussion 

Numerical calculations for rapid discharges 
were carried out for two different current 
densities, - 1.0 x 103 A m -2 and - 0 . 5 0 x  103 
A m -2, corresponding to about 7-8 min dis- 
charge and 20-22 min discharge respectively. 
The calculations were conducted until a local 
concentration of 0.5 M was reached, since the 
approximation of a binary electrolyte becomes 
too rough below this point. 

A comparison between experimental and 
theoretical discharge curves seems to be the most 
natural way to judge the relevancy of the model. 
This comparison cannot however be made 
straightforwardly since the potential in the 

~ ~ -0.1 a ~ "~ _ 

g - 0 2  - -  \ 

S @\ 

I = - 1 0 0 0  Am -z 

I % 
o 5 lO 

Time (min) 

Fig. l. Comparison between theoretical (solid lines) and 
experimental (dashed lines) discharge curves. Changes in 
overvoltage during discharge with the initial overvoltage 
taken as zero. 
(a) Ym.,,  = 0.60; (b) Xmax = 0.45; (c) Xmax = 0.60; (d) 
model without consideration of the structural effects 
( X ( x , t )  = 0).  

model is referred to the potential at z = 0 
taken as zero. In addition the initial drop of 
potential in the experimental discharge curves, 
due to supersaturation of lead sulphate [16], is 
not considered in the model. The comparison 
between the experimental and theoretical dis- 
charge curves are therefore made relative to the 
potential at z = 0 and t = 0. In order to dis- 
regard the phenomenon in the very beginning of 
discharge, the curves are adjusted to fit each 
other at the maximum after the initial drop of 
voltage, Fig. 1. 

These comparisons show rather good agree- 
ment at the lower current density, while the 
deviations are larger at the higher current 
density. This discrepancy may be expected when 
bearing in mind the approximate formulation of 
the structural changes, especially in Equation 
(26), and the fact that the exponential factor in 
this equation was experimentally established only 
for overvoltages less than 100 mV. The discharge 
mechanism may change at higher overvoltages. 
In that case it is also possible, in view of the 
non-uniform current distribution, that different 
parts of the electrode operate under different 
mechanisms. 

Another important factor, the discharge 
capacity, could be predicted within the vari- 
ability of electrode performance. This agreement 
can only be reached when considering the struc- 

0.5-- l 1 

0.4-- 

"6 0.3 t = 2.1 rain 

"~ 0 . 2 - -  

0.1 - -  

I 1 I I I I I I I 
0 0.5 .0 

z, distance 

Fig. 2. State of discharge distribution during discharge of 
porous lead dioxide electrode with -1000 Am -z. 
(Xmax = 0'45). 
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Fig. 3. Changes in current distribution during discharge. (I = -1000 A m-2,  X,~ax = 0"45). 

tural effects, since a model with invariant elec- 
trode matrix gives an almost infinite discharge 
curve (Fig. 1, curve d). (This is obvious, since 
reactants are always available as long as the 
current density does not exceed the value where 
the external mass transfer becomes limiting.) 
Fig. 1 shows also how an improved mass utiliza- 
tion (higher Xmax) would improve the capacity. 
The parameter X, to which the structural para- 
meters, porosity and active surface are related, is 
thus of dominating importance. The changes in 
this parameter during discharge are illustrated 
in Fig. 2. By definition, this parameter is .also a 
measure of the time-integral current distribution, 
and Fig. 2 may thus be compared with the experi- 
mental determinations reported previously [6]. 
The theoretical and experimental results show 
qualitative agreement. The quantitative devia- 
tions are difficult to interpret since even the 
experimental determinations must be considered 
as approximate. 

Fig. 3 demonstrates how the structural changes 
during discharge affect the current density 
distribution. As the insulation of the electrode 
surface proceeds inwards into the electrode, the 
maximum of the current distribution is similarly 
moving inwards. 

The acid depletion during rapid discharge is 
very difficult to measure experimentally, but an 
interpretation of this process is given from the 
solution of the equations in the model. 
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Fig. 4. Changes in concentration distribution during 
discharge. (1 = -1000 A m-2,  Xn~a~ -- 0"45), 

The concentration profile in the pore electro- 
lyte at different stages of discharge is illustrated 
in Fig. 4. It is apparent from this figure, that the 
acid concentration in the layer next to the zone 
of passivated electrode material tends to zero at 
the end of discharge. 

A comparison of Figs. 2, 3 and 4 indicates that 
the current density distribution exhibits a maxi- 
mum just behind the zone of unreactive material. 
According to Fig. 3 this maximum increases 
during discharge, while it simultaneously moves 
inwards into the electrode. The reason for this 
increase is the decreasing conductivity due to 
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acid depletion (Fig. 4) and increasing structural 
hindrance (Fig. 2). 

The slight minimum in the concentration 
profile becomes more accentuated during dis- 
charge. Just before the voltage drops rapidly at 
the end of discharge this minimum almost 
coincides with the maximum of the current 
distribution. It may thus be assumed that the 
discharge capacity is limited by an acid depletion 
where this minimum tends to zero. The physical 
picture of this process is illustrated in Fig. 5. 
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Fig. 5. Illustration of acid depletion and structural effects 
at the end of discharge with high current density. 

Conclusions 

The theoretical model presented here rests 
necessarily upon rough approximations con- 
cerning the rather complicated discharge be- 
haviour of the porous PbO2 electrode. The 
purpose of this model is to give a qualitative 
analysis rather than an exact, detailed descrip- 

tion. An exact treatment would require more 
knowledge about electrolytic data and about the 
details of the discharge mechanisms and the 
structural effects in the porous electrode. The 
present model gives a good explanation of the 
discharge behaviour of the porous lead dioxide 
electrode, especially the limited discharge capa- 
city. The relative importance of the various 
variables may be estimated from the model to 
suggest how improvements in performance can 
be reached. 
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